라일락 꽃이 피는 날

[빅분기 실기] 앙상블 배깅 (Bagging) 본문

데이터 분석/빅데이터 분석 기사

[빅분기 실기] 앙상블 배깅 (Bagging)

eunki 2022. 6. 19. 20:34
728x90

앙상블 배깅 (Bagging)

학습 데이터에 대해 여러 개의 부트스트랩 (Bootstrap) 데이터를 생성하고

각 데이터에 하나 또는 여러 알고리즘을 학습시킨 후

산출된 결과 중 투표 (Voting) 방식에 의해 최종 결과를 선정하는 알고리즘

 

 

[주요 하이퍼파라미터]

- n_estimators : 부트스트랩 데이터셋 수

 

 

 

 


 

 

Part 1. 분류 (Classification)

 

1. 분석 데이터 준비

import pandas as pd

# 암 예측 분류 데이터
data=pd.read_csv('breast-cancer-wisconsin.csv', encoding='utf-8')

X=data[data.columns[1:10]]
y=data[["Class"]]

 

 

 

1-2. train-test 데이터셋 나누기

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test=train_test_split(X, y, stratify=y, random_state=42)

 

 

 

1-3. Min-Max 정규화

from sklearn.preprocessing import MinMaxScaler

scaler=MinMaxScaler()
scaler.fit(X_train) 

X_scaled_train=scaler.transform(X_train)
X_scaled_test=scaler.transform(X_test)

 

 

 

 

2. 기본모델 적용

 

2-1. 훈련 데이터

from sklearn.svm import SVC
from sklearn.ensemble import BaggingClassifier

model = BaggingClassifier(base_estimator=SVC(), n_estimators=10, random_state=0)
model.fit(X_scaled_train, y_train)

pred_train=model.predict(X_scaled_train)
model.score(X_scaled_train, y_train)  # 0.982421875

10개의 데이터셋에 SVC를 훈련시킨 10개 모델 결과를 종합한다.

 

 

 

① 오차행렬 (confusion matrix)

from sklearn.metrics import confusion_matrix

confusion_train=confusion_matrix(y_train, pred_train)
print("훈련데이터 오차행렬:\n", confusion_train)

정상(0) 중 4명이 오분류, 환자(1) 중 5명이 오분류되었다.

 

 

 

② 분류예측 레포트 (classification report)

from sklearn.metrics import classification_report

cfreport_train=classification_report(y_train, pred_train)
print("분류예측 레포트:\n", cfreport_train)

정밀도(precision) = 0.98, 재현율(recall) = 0.98

 

 

 

2-2. 테스트 데이터

pred_test=model.predict(X_scaled_test)
model.score(X_scaled_test, y_test)  # 0.9590643274853801

 

 

 

① 오차행렬 (confusion matrix)

confusion_test=confusion_matrix(y_test, pred_test)
print("테스트데이터 오차행렬:\n", confusion_test)

정상(0) 중 5명이 오분류, 환자(1) 중 2명이 오분류되었다.

 

 

 

② 분류예측 레포트 (classification report)

cfreport_test=classification_report(y_test, pred_test)
print("분류예측 레포트:\n", cfreport_test)

정밀도(precision) = 0.95, 재현율(recall) = 0.96

 

 

 

 


 

 

Part 2. 회귀 (Regression)

 

1. 분석 데이터 준비

# 주택 가격 데이터
data2=pd.read_csv('house_price.csv', encoding='utf-8')

X=data2[data2.columns[1:5]]
y=data2[["house_value"]]

 

 

 

1-2. train-test 데이터셋 나누기

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test=train_test_split(X, y, random_state=42)

 

 

 

1-3. Min-Max 정규화

from sklearn.preprocessing import MinMaxScaler

scaler=MinMaxScaler()
scaler.fit(X_train)

X_scaled_train=scaler.transform(X_train)
X_scaled_test=scaler.transform(X_test)

 

 

 

 

2. 기본모델 적용

 

2-1. 훈련 데이터

from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import BaggingRegressor

model = BaggingRegressor(base_estimator=KNeighborsRegressor(), n_estimators=10, random_state=0)
model.fit(X_scaled_train, y_train)

pred_train=model.predict(X_scaled_train)
model.score(X_scaled_train, y_train)  # 0.6928982134381334

 

 

 

2-2. 테스트 데이터

pred_test=model.predict(X_scaled_test)
model.score(X_scaled_test, y_test)  # 0.5612676280708411

 

 

 

① RMSE (Root Mean Squared Error)

import numpy as np
from sklearn.metrics import mean_squared_error 

MSE_train = mean_squared_error(y_train, pred_train)
MSE_test = mean_squared_error(y_test, pred_test)

print("훈련   데이터 RMSE:", np.sqrt(MSE_train))
print("테스트 데이터 RMSE:", np.sqrt(MSE_test))

728x90