데이터 분석/Python
[Sklearn] 데이터 셋 (dataset)
eunki
2021. 5. 13. 19:22
728x90
데이터 셋 (dataset)
DESCR: dataset 정보
data: feature data
feature_names: feature data의 컬럼 이름
target: label data (수치형)
target_names: label의 이름 (문자형)
from sklearn.datasets import load_iris
iris = load_iris()
data = iris['data']
feature_names = iris['feature_names']
target = iris['target']
데이터프레임 생성
df_iris = pd.DataFrame(data, columns=feature_names)
df_iris['target'] = target
train / validation 세트 나누기
from sklearn.model_selection import train_test_split
x_train, x_valid, y_train, y_valid = train_test_split(df_iris.drop('target', 1), df_iris['target'])
x_train.shape, y_train.shape # ((112, 4), (112,))
x_valid.shape, y_valid.shape # ((38, 4), (38,))
stratify: label 클래스의 분포를 균등하게 배분
x_train, x_valid, y_train, y_valid = train_test_split(df_iris.drop('target', 1), df_iris['target'], stratify=df_iris['target'])
728x90